
CPU08 1

ENG SC757 - Advanced Microprocessor Design

Babak Kia
Adjunct Professor
Boston University
College of Engineering

The Intel IA-32 Architecture

2

Historical Perspective
Intel’s 8086 and 8088 16-bit processors were the
forefathers of the IA-32 architecture
Developed in 1978, the 8086 sported a 16-bit
external data bus and a 1 MB addressing
capability (20 address lines)
Both the 8086 and 8088 introduced a 16 bit
segment register which pointed to a memory
segment of 64 KB
In 1982 Intel introduced the
286 processor, and with it, the
protected mode operation to
support virtual memory
management

3

Historical Perspective
The year 1985 brought the 386 processor, which
was Intel’s first 32-bit processor
The 386 provided support for
• 32-bit address space (4 GB physical memory)
• A segmented and a flat memory model
• Paging mode as further support

for virtual memory management
In 1989 Intel released the 486
which was the first time Intel
introduced level 1 cache along
with power saving and other
system management options
into a processor

4

Historical Perspective
With the advent of the Pentium processor in 1993
Intel added a second execution pipeline, doubled
the cache, used a MESI protocol to support a more
efficient write-back cache along with greater
branch prediction support and on-chip branch table
Intel also introduced the APIC, and support for
multiple processors, in particular support for a
glueless two processor system. A subsequent
stepping also introduced MMX

5

Historical Perspective

6

Historical Perspective

CPU08 2

7

The Pentium Pro (P6)
The Pentium Pro processor, also referred
to as P6 introduced a three-way
superscalar pipelined architecture
Three-way superscalar refers to the fact
that the P6 is capable of (on average)
decoding, dispatching, and completing
three instructions per clock cycle
In order to perform this feat, the P6 uses
a decoupled, 12-stage superpipeline
which supports out-of-order instruction
execution

8

P6 Microarchitecture

At the heart of the P6 microarchitecture
are three data-processing concepts:
• Deep Branch Prediction – allowing the

processor to decode instructions beyond
branches

• Dynamic Dataflow Analysis – monitoring
dataflow to take advantage of out-of-order
execution opportunities

• Speculative Execution – enabling the
processor to execute instructions which are
beyond a conditional branch which has not yet
been resolved

9

Hyper-Threading Technology
Hyper-Threading (HT) is another innovation
which improves the performance of multi-
threaded, or multi-tasking operations within
the IA-32 architecture
HT enables a single physical processor to
execute two or more distinct code streams
(threads) concurrently
The processor is divided into two or more
logical processor, each with its own copies of
data, control, and segment registers, as well
as debug and interrupt control

10

Hyper-Threading Technology

11

Extended Memory 64 Technology

Yet another innovation is the EM64T,
which increases the linear address space
of the processor to 64 bits, and supports
a physical address space of up to 40 bits
In order for the IA-32 to take advantage of
this feature, it must operate in the IA-32e
mode
This is really beyond the realm of
Embedded Systems and so we’ll skip it

12

Basic Modes of Operation

The IA-32 is basically capable of
operating in one of three modes:
• Protected mode – native state of the processor
• Real-address mode – the programming model

of the 8086, used for backward compatibility
• System Management Mode – used for power

management, system security, etc.
The operating mode defines which
architectural features are available

CPU08 3

13

The IA-32 Register Model

14

The Basic Memory Model

The memory model of the IA-32 is
separated into three different models:
• Flat Memory Model – memory appears to a

program as a single, contiguous address
space from 232 bytes. Code, data, and stack
are all contained in this address space, also
called the linear address space

• Segmented Memory Model – memory appears
to a program as a group of independent
memory segments, where code, data, and
stack are contained in separate memory
segments.

15

The Basic Memory Model
• Segmented Memory Model (cont.) – to address

memory in this model, the processor must use
segment registers and an offset to derive a
linear address. Programs running in this mode
can access 16,383 different segments, each
addressable to up to 232 bytes.

• The primary reason for having segmented
memory is to increase system reliability, for
example, preventing stack corruption

• Real-address Memory Model – is the original
i8086 memory model and is present to provide
backward compatibility support

16

The Memory Management Model

17

Paging and Virtual Memory
With the first two memory models (flat
and segmented), linear address can be
mapped into the processor’s physical
address either directly, or through a
paging mechanism
When paging is enabled on the IA-32,
linear address space is sectioned into
pages which are then mapped into the
virtual address space, and consequently,
mapped into the physical address space
as needed

18

The Register Model

The IA-32 provides a number of general
and special-purpose registers
• General Purpose Registers – a set of 8

registers for storing operands and pointers.
These are: EAX, EBX, ECX, EDX, ESI, EDI, EBP,
and ESP

• Segment Registers – provide 6 segment
registers

• EFLAGS Register – Status and Control register
• EIP Register – The 32-bit Instruction Pointer,

pointing to the next instruction to be executed

CPU08 4

19

The Register Model

20

The Register Model
EAX – Accumulator
EBX – Pointer to data
in the DS segment
ECX – Counter for
string/loop operations
EDX – I/O Pointer
ESI – Source pointer
for string operations
EDI – Destination
pointer
ESP – Stack Pointer
EBP – Pointer to data
on stack

21

EFLAGS

22

Segment Registers
The segment registers hold the segment
selectors which are special pointers that
identify individual segments in memory
Segment registers are used depending on
the memory management model in use
In a flat memory model, segment
registers point to overlapping segments,
each of which begins at address 0
When using the segmented memory
model, each segment is loaded with a
different memory address

23

Segmentation over Flat Memory

24

Segmentation over Segmented Memory

CPU08 5

25

Protection Rings

26

Real versus Protected Mode
Real Mode:
• From an applications point of view, protected

mode and real mode are not that different
• In Real Mode, memory segmentation is

handled internally by use of segment registers
• The contents of these segments form part of

the physical address
Protected Mode:
• In Protected Mode, memory segmentation is

defined by a set of tables called the Descriptor
Tables, and the segment register is simply a
pointer to these tables

• Therefore in protected mode, segment
registers don’t form part of the address

27

Protected Mode

Protected mode offers many features that
enhance multi-tasking and promote
system stability
These features offer memory protection,
paging, and hardware support for virtual
memory management
Most x86 Operating Systems, including
Linux and Windows run in protected
mode

28

Real Mode

Real mode disables protection features
available on Protected mode to allow
backward compatibility with old software
running in DOS mode
All x86 CPUs start up in real mode until
they are switched into protected mode by
an Operating System at its boot time

29

Memory Management Overview
The memory management of IA-32 is divided
into two parts: segmentation and paging
Segmentation is a mechanism for isolating
individual code, data, and stack segments so
that multiple tasks can run on the same
processor without interfering with eachother
Paging implements a mechanism where
individual pieces of a program are mapped
into the physical memory as may be
necessary
Segmentation is always used, paging is
optional

30

Segmentation and Paging

CPU08 6

31

Global/Local Descriptor Tables
The Global Descriptor Table contains
segmentation information which any
application can access
The Local Descriptor Table contains
segmentation information specific to a
single task or program
Both tables contain entries called
segment descriptors which provide the
base address of segments, along with
access rights, type, and usage
information

32

Portions of this power point presentation may have been taken from relevant users and technical manuals. Original content Copyright © 2005 – Babak Kia

